Data Augmentation for Plant Classification

نویسندگان

  • Pornntiwa Pawara
  • Emmanuel Okafor
  • Lambert Schomaker
  • Marco Wiering
چکیده

Data augmentation plays a crucial role in increasing the number of training images, which often aids to improve classification performances of deep learning techniques for computer vision problems. In this paper, we employ the deep learning framework and determine the effects of several data-augmentation (DA) techniques for plant classification problems. For this, we use two convolutional neural network (CNN) architectures, AlexNet and GoogleNet trained from scratch or using pretrained weights. These CNN models are then trained and tested on both original and data-augmented image datasets for three plant classification problems: Folio, AgrilPlant, and the Swedish leaf dataset. We evaluate the utility of six individual DA techniques (rotation, blur, contrast, scaling, illumination, and projective transformation) and several combinations of these techniques, resulting in a total of 12 data-augmentation methods. The results show that the CNN methods with particular dataaugmented datasets yield the highest accuracies, which also surpass previous results on the three datasets. Furthermore, the CNN models trained from scratch profit a lot from data augmentation, whereas the fine-tuned CNN models do not really profit from data augmentation. Finally, we observed that data-augmentation using combinations of rotation and different illuminations or different contrasts helped most for getting high performances with the scratch CNN models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic Data Augmentation using GAN for Improved Liver Lesion Classification

In this paper, we present a data augmentation method that generates synthetic medical images using Generative Adversarial Networks (GANs). We propose a training scheme that first uses classical data augmentation to enlarge the training set and then further enlarges the data size and its diversity by applying GAN techniques for synthetic data augmentation. Our method is demonstrated on a limited...

متن کامل

Data Augmentation by Pairing Samples for Images Classification

Data augmentation is a widely used technique in many machine learning tasks, such as image classification, to virtually enlarge the training dataset size and avoid overfitting. Traditional data augmentation techniques for image classification tasks create new samples from the original training data by, for example, flipping, distorting, adding a small amount of noise to, or cropping a patch fro...

متن کامل

Submitting an automation method for detection cavitations in hydro turbines considering sensitivity parameters (Sefidroud hydroelectric power plant dam)

In this research, submitting a method for evaluation of detection cavitation specifications and also automation of cavitation threshold has been investigated. The case study was based on Kaplan hydro turbine data located on Tarik hydropower plant at Sefidroud dam. The foundation of method was employment MATLAB program, sensor classification sensor locations and cavitation sensitivity. For train...

متن کامل

GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification

Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning...

متن کامل

The Effectiveness of Data Augmentation in Image Classification using Deep Learning

In this paper, we explore and compare multiple solutions to the problem of data augmentation in image classification. Previous work has demonstrated the effectiveness of data augmentation through simple techniques, such as cropping, rotating, and flipping input images. We artificially constrain our access to data to a small subset of the ImageNet dataset, and compare each data augmentation tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017